178
20
186 [
=~ 12
g
o
4
0 1 ] | i ]
0.8 0.9 1 1.1 1.2
£
fo

Fig. 4. Amplifier response for 40-percent 3-dB bandwidth
using distributed matching network.

TABLE II
NORMALIZED PARAMETER VALUES

Z01=2 ,=0.0727
202=0.282 1,=0.478
Z03=0.80 [5=0.25
204=2.2 14=0.5
Z05=1 15=0.25

values (see Table I1) for 12-dB gain amplifier utilizing the distributed
matching network illustrated in Fig. 1(d). The results obtained for a
prescribed 3-dB bandwidth of 40 percent (£0.5-dB ripple) are pre-
sented in Fig. 4.
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Loss Calculations for Coupled Transmission-
Line Structures

V. K. TRIPATHI

Abstract—Ezxpressions are derived for computing loss in coupled
TEM structures in terms of complex even- and odd-mode propaga-
tion constants and characteristic impedances of the lines. The atten-
uation due to conductor (series) and dielectric (shunt) lesses in a
given structure can be determined utilizing these expressions. The
results may be particularly useful for computing conductor loss in
microwave circuits with a large number of sections used in traveling-
wave devices and as microwave circuit elements. The method is
applied to some typical structures for computing conductor loss.
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Fig. 1. (a) Rectangular coupled bars between parallel ground planes. (b) Circular
coupled bar cross section showing an inward perturbation of all metal surfaces
by én. (c) Schematic of a parallel coupled line four-port.
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* This is the same expression as obtained by Kolker [1].
N '{'.In these expressions the upper sign is for conductor (series) loss and the lower
sign is for dielectric (shunt) loss.



CORRESPONDENCE

Losses in coupled TEM networks can be estimated utilizing a
complex propagation constant and a complex characteristic imped-
ance for even and odd mode of excitation. The complex propagation
constants for even and odd modes are given by

Ye = e 1+ B and o = o, + 78, (1>

where a, and ¢, are the attenuation constants and 8, and 8, are the
phase constants for even and odd modes, respectively. For the case of
low-loss lines considered here the attenuation constants consist of a,
series component due to conductor loss and a shunt component due
to dielectric loss. The phase constants for even and odd modes are
approximately equal for this case, that is, 8,2 =w/pe.

For conductor loss the expressions for «, and «, have been ob-
tained by Kolker [1] and Horton [2] for the case of coupled rec-
tangular bars and can be calculated utilizing the results of Cohn [3]
and Getsinger [4], respectively. Horton’s expressions which lead to
more accurate results are given by

2R Z4 3Cyerd
o= [—(1 o) I )
(gcfe/s_’ 3Cyi! w/b+1 — t/b:' @
/b at/b (1 — #/b)2

with a, given by the same expression as (2) with Z,, and Cy,’ replaced
by Z,, and Cy,’, respectively. In (2) R, is surface resistivity in ohms
per square, 7=2376.7 Q free-space wave impedance, and e, is the rela-
tive dielectric constant. These values for «’s can be calculated utiliz-
ing the results of Getsinger [4] and Gupta [5] as shown by Horton
2].

Attenuation constants for the case of coupled circular bars as
shown in Fig. 1(b) can be obtained using the same procedure as in
Horton [2]. Utilizing the expression for the conductor attenuation
constant for a transmission line as given by [6]

River 8Z,
= ZW\Z/—: o nepers/unit length 3
and following the method of Horton the expressions for «, and «, are
found to be
sérZao aCoole ( d) aCoole
-2 1 4 ) ook
[ ( ) (s/8) Y5 aam]
and
RS TZOC aCUC d aCO €
== —(1—-S— L‘+(1+—) el @)
7% b/ o(s/b) b / a(d/b)
where Coo=C;+4Cp and C,o=C,. These can be calculated utilizing

the graphs for C;/e and Cn/e obtained by Cristal [7].

For the case of dielectric loss the attenuation constant is propor-
tional to the ratio of conductance to capacitance per unit length as
given by a=Re /jwL(G+jwC)=23G/C+/LC. It is the same for even
and odd modes since for both modes of excitation G/C=¢/e. There-
fore,

©)

Ay = Qg =

where tan § is the loss tangent of the dielectric, X is the wavelength,
and ¢ is the relative dielectric constant.

The characteristic even- and odd-mode impedances of the lines
are also complex and are, approximately, given by

Zo2Z r[1 + “"":I
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and B=w~/ne. The plus sign is for series (conductor) loss and minus
sign for shunt (dielectric) loss.

The immittance parameters for two coupled-line four-ports as.
shown in Fig. 1(c) can be obtained by proceeding as in Jones and
Bolljahn [8] postulating four current or voltage sources and utilizing
the expressions for propagation constants and characteristic im-
pedances as given by (1) and (6), respectively. For the case of low-
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Fig. 4. Attenunation response of comb-line structures
(Case 6; Table I with C(6) =1 pF).

loss identical lines the impedance parameters are found to be
Zu=Zy=1L2y=7Zu

=3[~ cot 0(Zoe + Zoo) + 52 0(Zosatsl + Zoger,1)] (7a)
Ziyw=Zan=Zyu=2Zy
= 3[—f ot 8(Zoe — Zoo) + c5c 0(Zodtsl — Zogwo1)] (7b)
Zie=Zy=Zy=2ZLsn
csc @
= —‘% [(ZOG + Zoo) +] cot G(Zocrael + Zoo 0501)] (7(3)
Zu; = Z31 =Zou= Z42
s 0
= L (e — Zao) + j cot 8Zuraed — Zoyad)]  (74)

2

where 8 =31. The admittance parameters are determined in a similar
manner utilizing voltage sources.

Losses in a given structure may then be calculated in terms of loss
due to individual sections as a function of frequency. Table I shows
the expressions for attenuation per section for some typical unit filter
sections consisting of coupled lines with various boundary conditions
existing at individual ports of the structures.

The conductor loss per section as a function of frequency of some
useful slow wave structures (filters) is plotted in Figs. 2, 3, and 4 for
some typical values of structure dimensions. These are calculated uti-
lizing the expressions given in Table I and the graphs for Cp.:/,
Crosd, and Cy/ obtained by Getsinger [4] and Gupta [5] for coupled
rectangular bars.
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Computer-Aided Renormalized Perturbation
Method for the Inhomogeneously
Loaded Waveguide

TAKEHIKO HIDAKA

Abstract—The renormalized perturbation method is applied to
the inhomogeneously loaded waveguide. The second-order term
in the usual Rayleigh-Schridinger perturbation method is divergent
with respect to increasing the concerned mode number. Introducing
the phenomenological parameter by analogy to the quantum electro-
dynamics, we have the nondivergent second-order perturbation
term.

The Rayleigh—Ritz variational method and the finite-difference
solution method are adequate to the eigenvalue problems of the
inhomogeneously loaded waveguide, as shown in Fig. 1 [1]-[4].
Consumed computing time should be proportional to N? for the solu~
tion of the N XN matrix in these procedures (N is the concerned
mode number in the R-R method, and in the finite-difference
method, it is the total number of mesh points [4]). Since the comput-
ing time accompanying the large N is very long, we may request a
more simple method for it.

The perturbation method has been believed to be applicable only
to problems that are very similar to exactly solvable problems {t].
The usual Rayleigh-Schrsdinger perturbation method includes some
difficulties. The greatest difficulty is that the second-order (and/or
higher order) terms are divergent with respect to increasing the con-
cerned mode number, even if the loading is weak [7]. In this cor-
respondence the extensive perturbation method, which excludes the
divergence, will be given.

The Rayleigh~Schrédinger perturbation equation is described as
5], [6]

’Yi=‘Yz°+Pzi+Z ﬁ.i’o_f_ e

iz v — v

()

where v;° and «,° are the propagation constants of the ¢ and j mode
of the unperturbed waveguide, respectively, and I';; is the perturba-
tion Hamiltonian

Ty = (v,0| L] w9 @

where )\I/i") shows the normalized unperturbed eigenfunction of the
i mode, and L is the perturbation operator [5], [6].

We discuss a thin resistive film loaded waveguide as shown in
Fig. 1. InFig. 1, if 1/R-+/(uo/eo) - (/) is constant with respect to the
change of d/b, then the first-order perturbation term in (1) is con-
stant, and thus we call it the constant loading. Physically, it is ex-
pected that, according to 4/b—0 (i.e., R—0) under the constant load-
ing, the perturbed propagation constant v; goes near to ;% because
the ¢/6=0 load gives no perturbation for the electromagnetic wave,
even if the load has high conductivity.

The result of Rayleigh~Schrédinger calculation for constant load-
ing is shown in Fig. 1. At small d/b, i.e., small R, the calculated
propagation constant is divergent. This situation is the same as the
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