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Fig.4. Amplifier response for40.percent 3-dB bandwidth
using distributed matching network.

TABLE II

NORMALIZED PARAMETER VALUES

Zol =2 1,=0.0727
Z02 = 0.282 :4#~8
Z03=0.80
Z04=2.2 14=0:5
Z05 = 1 1,=0.25

values (see Table II) for12-dB gain amplifier utilizing the distributed

matching network illustrated in Fig. l(d). Theresults obtained fora

prescribed 3-dB bandwidth of 40 percent (-10.5-dB ripple) are pre-

sented in Fig. 4.
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V. K. TRIPATHI

Absfracf—Expressions are derived for computing loss in coupled

TEM structures fn terms of complex even- andodd-mode propaga-

tion constants and characteristic impedances of the lines. The atten-

uation due to conductor (series) and dielectric (shunt) losses in a

given structure can be determhzed utilizing these expressions. The

results may be particularly useful for computing conductor loss in

microwave circuits with a large number of sections used in traveling-

wave devices and as microwave circuit elements. The method is

applied to some typical structures for computing conductor loss.
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Fig. 1. (a) Rectangular coupled bars between parallel ground planes. (b) Circular
coupled bar cross section showing an inward perturbation Gf all metal surfaces
by&z. (c) Schematic of aparallel coupled line four-port.
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* This is the same expression as obtained by KoIker [1].
+ In these expressions the upper sign is for conductor (series) loss and the lower

sign is for dielectric (shunt) loss.
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Losses in coupled TEM networks can be estimated utilizing a

complex propagation constant and a complex characteristic imped-

ance for even and odd mode of excitation. The complex propagation

constants for even and odd modes are given by

70 = ffE+j& ad v. = tio+j&, (1)

where a. and a~ are the attenuation constants andp. and f?. are the

phase constants for even and odd modes, respectively. For the case of

low-loss lines considered here the attenuation constants consist of a

series component due to conductor loss and a shunt component due

to dielectric loss. The phase constants for even and odd modes are

approximately equal for this case, that is, p,~p.~~=a<~~.
—

For conductor loss the expressions for a, and a, have been ob-

tained by Kolker [I] and Horton [2] for the case of coupled rec-

tan~lar bars andcanbe calculated utilizing therest~lts of Cohn [3]

and Getsinger [4], respectively. Horton’s expressions which lead to

more accurate results are given by

2i&Tzoe
~e=—

[
– (1 – ,/’b) S + (1+ t/b)

~zb

“(
!,

:$b~ + $,$) + 2
w/b + 1 – t/b

(1– t,/b)Z– 1 (2)

with ao given by the same expression as (2) with Z., and Cf.’ replaced

by Z.. and Cf.’, respectively. In (2) R. is surface resistivity in ohms

per square, q =376.7 Q free-space wave impedance, and ~ is the rela-

tive dielectric constant. These values for a’s can be calculated utiliz-

ing the results of Getsinger [4] and Gupta [5] as shown by Horton

[2].

Attenuation constants for the case of coupled circular bars as

shown in Fig. 1 (b) can be obtained using the same procedure as in

Horton [2]. Utilizing the expression for the conductor attenuation

constant for a transmission line as given by [6]

R,& 8Z.—
“C – Z-pZ: x

nepers/unit length (3)

and following the method of Horton the expressions for a. and a, are

found to be

“=%[-(’-;)%+(’+ +)%;l “a)
and

where C.O= C~+4 Cm and Co.= Ca. These can be calculated utilizing

the graphs for C./e and C~/e obtained by Cristal [7].

For the case of dielectric loss the attenuation constant is propor-

tional to the ratio of conductance to capacitance per unit length as

given by a = Re V“WL(G +jJC) c+G/ CV’~C. It is the same for even

and odd modes since for both modes of excitation G/C= u/e. There-

fore,

7r~E,
CYO=%=ad=—r tan ~ (5)

where tan ~ is the loss tangent of the dielectric, h is the wavelength,

and e, is the relative dielectric constant.

The characteristic even- and odd-mode impedances of the lines

are also complex and are, approximately, given by

where

(6)
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Fig. 2. Attenuation response of meander lines (Case .3; Table I).
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Fig. 3. Attenuation response of interdigital lines (Case 4; Table I).

and P = o ~~e. The plus sign is for series (conductor) loss and minus

sign for shunt (dielectric) loss.

The immittance parameters for two coupled-line four-ports as.

shown in Fig. 1 (c) can be obtained by proceeding as in Jones and

Bolljahn [8] postulating four current or voltage sources and utilizing

the expressions for propagation constants and characteristic im-

pedances as given by (1) and (6), respectively. For the case of low-
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Fig. 4. Attenuation response of comb-line structures
(Case 6; Table I with C(8) =1 pF).

loss identical lines the impedance parameters are found to be

Z1l = Z22= z,?= Z44

= *[–Y’cotm. + zoo)+ CSC2Wk’d + Go’d)l
Z12 ‘Z21=Za4=Z43

= *[–j cot .9(Z0,– z..) + Csc’ O(zoe’ad – Zoo’sol) ]

Z14= Z23= 241= ZN
–j csc e. —– [(z., + zoo)+ j cot e(zo.’a,l + Zoo’sol) ]

2

ZN ‘z21=z?4=z49

——+=- [z.. – zoo)+ j cotO(ZOG”C%I– Zoo”a.l) ]

(7a)

(7b)

(7C)

(?d)

where d=pl. The admittance parameters are determined in a similar

manner utilizing voltage sources.

Losses in a given structure may then be calculated in terms of loss

duetoindividual sections asa function of frequency .Table I shows

the expressions for attenuation per section for some typical unit filter

sections consistiugof coupled Iineswith various boundary conditions

existing at individual ports of the structures.

The conductor loss per section as a function of frequency of some

useful slow wave structures (filters) isplotted in Figs. 2, 3, and4 for

some typical values of structure dimensions. These are calculated uti-

lizing the expressions given in Table 1 and the graphs for Cfe/,’,

Cf./J, and Cj//obtained by Getsinger [4]and Gupta [S] for coupled

rectangular bars.
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Computer-Aided Renormalized Perturbation

- Method for the Inhomogeneously

Loaded Waveguide

TAKEHIKO HIDAKA

Abstract—The renormalized perturbation method is applied to

the inhomogeneously loaded wavegnide. The second-order term

in the usual Rayleigh-Schri5dinger perturbation method is divergent

with respect to increasing the concerned mode number. Introducing

the phenomenological parameter by analogy to the quantum electro-

dynamics, we have the nondivergent second-order perturbation

term.

The Rayleigh–Rkz variational method and the finite-difference

solution method are adequate to the eigenvalue problems of the

inhomogeneously loaded waveguide, as shown in Fig. 1 [1 ]– [4].

Consumed computing time should be proportional to N8 for the solu-

tion of the NX N matrix in these procedures (N is the concerned

mode number in the R–R method, and in the finite-difference

method, it is the total number of mesh points [4]). Since the comput-

ing time accompanying the large N is very long, we may request a

more simple method for it.

The perturbation method has been believed to be applicable only

to problems that are very similar to exactly solvable problems [1].

The usual Rayleigh–Schrodinger perturbation method includes some

difficulties. The greatest difficulty is that the second-order (and/or

higher order) terms are divergent with respect to increasing the con-

cerned mode number, even if the loading is weak [7]. In thi8 cor-

respondence the extensive perturbation method, which excludes the

divergence, will be given.

The Rayleigh-Schrodin ger perturbation equation is described as

[5], [6]

(1)

where ~io and y,o are the propagation constants of the i and j mode

of the unperturbed waveguide, respectively, and rii is the perturba-

tion Hamiltonian

where I W;”) shows the normalized unperturbed eigenfunction of the

i mode, and L is the perturbation operator [5], [6].

We discuss a thin resistive film loaded waveguide as shown in

Fig. 1. In Fig. 1, if l/R. <(PO/CO). (d/b) is constant with respect to the

change of d/b, then the first-order perturbation term in (1) is con-

stant, and thus we call it the constant loading. Physically, it is ex-

pected that, according to d/b~O (i.e., R+O) under the constant load-

ing, the perturbed propagation constant Y{ goes near to yio, because

the d/b = O load gives no perturbation for the electromagnetic wave,

even if the load has high conductivity.

The result of Rayleigh–Schr6dinger calculation for constant load-

ing is shown in Fig. 1. At small d/b, i.e., small R, the calculated

propagation constant is divergent. This situation is the same as the
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